
Characterizing and Improving the General
Performance of Apache Zookeeper

Chandan Bagai / Kenneth B. Kent

University of New Brunswick

Faculty of Computer Science

cbagai@unb.ca ken@unb.ca

Outline

• Introduction to Hadoop and sub project Zookeeper built on Top of it.

• Visualization of logical components of Apache Zookeeper.

• Focusing on Performance Metrics and some design aspects which may lead

to a performance enhancement.

Motivation

The Apache Hadoop project is an open source project which supports distributed

applications involving Big Data. It is an umbrella for a number of sub-projects like

Zookeeper. Zookeeper is a fault tolerant distributed co-ordination service used to provide

functionalities required by cloud based applications that are bootstrapping, storing

configuration data etc. It uses wait free shared data objects rather than using a

conventional approach of using locks in order to guarantee the order of operations being

applied on the above objects.

In this contribution we provide the insights of this coordination service. Working flow of

this service and metrics used for its performance. Some tests and optimizations that may

be helpful in boosting the performance of Apache Zookeeper.

Background

Below is the figure showing the logical makeup of the Zookeeper service. Read requests

are serviced from the local database. On the contrary write requests are transformed into

idempotent transactions. These transactions are communicated through the protocol used

by Zookeeper i.e. Zookeeper Atomic Broadcast Protocol (ZAB). ZAB satisfies all the

requirements of Zookeeper i.e. Reliable Delivery, Total Order, and Casual Order etc.

The processing of the transaction where ZAB comes into scenario is as follows:-

• Leader Election among quorum (majority) of servers.

• After leader is elected it synchronizes with its followers.

• Next to synchronization is broadcasting of messages and recovery (if required).

Prior to ZAB is the request processing pipeline which is the core area in regard to

performance. The request is passed through a chain of request processors.

Methodology

• As above discussed that request pipeline is a major part of Zookeeper. When the write

transaction enters the request pipeline it is first put into PrepRequestProcessor and the

request is converted to a transaction and for read requests only session verification

takes place. In case of multi-op the request is serialized here itself but, it should be

serialized at the next processor.

• In the next processor to optimize read throughput if there are no pending writes it is

directly passed to the Final processor. But, for write requests the whole queue is

blocked. We have seen that the take () method of the Linked Blocking Queue takes

most of time. On the contrary, poll() method of Concurrent Linked Queue shows

better performance in the same scenario, thus being thread safe as well. So we

replaced Linked Blocking Queues with Concurrent Linked Queues.

•The serialization mechanism has been modified as well which boosted the performance of

Zookeeper. We have used the concept of Externalization i.e. we are only persisting the

data that is required to recover Zookeeper in case of failures, rather than storing the

complete meta-data. In order to accomplish results via this approach we had to

 implement customized methods for marshaling and demarshalling of data.

• We found that Persistent Znodes have higher throughput and less latency as compared

to Persistent Sequential nodes because these involve extra processing done at one of the

request processors we talked above. Moreover especially in Ephemeral node where the

server has to clean them up after the session expired so it has to maintain some kind of

data structure for these nodes.

• Also we tried to obtain a lower bound on the speed of on-disk Zookeeper and compared

the result with the conventional File Write Disk Mechanism thus collecting results

depicting that there is not much of difference for writing a 10000000 bytes the difference

was merely 0.042 seconds.

• The goal of this project was to increase the performance of Apache Zookeeper ensuring

its normal functioning. All the modifications made to the code have led to noticeable

performance impacts. The approach has been tested and evaluated as well.

